656 research outputs found

    An analysis method for time ordered data processing of Dark Matter experiments

    Full text link
    The analysis of the time ordered data of Dark Matter experiments is becoming more and more challenging with the increase of sensitivity in the ongoing and forthcoming projects. Combined with the well-known level of background events, this leads to a rather high level of pile-up in the data. Ionization, scintillation as well as bolometric signals present common features in their acquisition timeline: low frequency baselines, random gaussian noise, parasitic noise and signal characterized by well-defined peaks. In particular, in the case of long-lasting signals such as bolometric ones, the pile-up of events may lead to an inaccurate reconstruction of the physical signal (misidentification as well as fake events). We present a general method to detect and extract signals in noisy data with a high pile-up rate and qe show that events from few keV to hundreds of keV can be reconstructed in time ordered data presenting a high pile-up rate. This method is based on an iterative detection and fitting procedure combined with prior wavelet-based denoising of the data and baseline subtraction. {We have tested this method on simulated data of the MACHe3 prototype experiment and shown that the iterative fitting procedure allows us to recover the lowest energy events, of the order of a few keV, in the presence of background signals from a few to hundreds of keV. Finally we applied this method to the recent MACHe3 data to successfully measure the spectrum of conversion electrons from Co57 source and also the spectrum of the background cosmic muons

    Development of a front end ASIC for Dark Matter directional detection with MIMAC

    Full text link
    A front end ASIC (BiCMOS-SiGe 0.35 \mum) has been developed within the framework of the MIMAC detector project, which aims at directional detection of non-baryonic Dark Matter. This search strategy requires 3D reconstruction of low energy (a few keV) tracks with a gaseous \muTPC. The development of this front end ASIC is a key point of the project, allowing the 3D track reconstruction. Each ASIC monitors 16 strips of pixels with charge preamplifiers and their time over threshold is provided in real time by current discriminators via two serializing LVDS links working at 320 MHz. The charge is summed over the 16 strips and provided via a shaper. These specifications have been chosen in order to build an auto triggered electronics. An acquisition board and the related software were developed in order to validate this methodology on a prototype chamber. The prototype detector presents an anode where 2 x 96 strips of pixels are monitored.Comment: 12 pages, 10 figure

    Low energy conversion electron detection in superfluid He3 at ultra-low temperature

    Full text link
    We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3) prototype experiment concerning the measurement of low energy conversion electrons at ultra-low temperature. For the first time, the feasibility of the detection of low energy electrons is demonstrated in superfluid He3-B cooled down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell conversion of the 14.4 keV nuclear transition of a low activity Co57 source are detected, opening the possibility to use a He3-based detector for the detection of Weakly Interacting Massive Particles (WIMPs) which are expected to release an amount of energy higher-bounded by 5.6 keV.Comment: 8 pages, 3 figures, to appear in NIM

    Electron - nuclear recoil discrimination by pulse shape analysis

    Full text link
    In the framework of the ``ULTIMA'' project, we use ultra cold superfluid 3He bolometers for the direct detection of single particle events, aimed for a future use as a dark matter detector. One parameter of the pulse shape observed after such an event is the thermalization time constant. Until now it was believed that this parameter only depends on geometrical factors and superfluid 3He properties, and that it is independent of the nature of the incident particles. In this report we show new results which demonstrate that a difference for muon- and neutron events, as well as events simulated by heater pulses exist. The possibility to use this difference for event discrimination in a future dark matter detector will be discussed.Comment: Proseedings of QFS 2007, Kazan, Russia; 8 pages, 4 figures. Submited to J. Low Temp. Phy

    Low energy measurements with Helium Micromegas micro-TPC

    Full text link
    The measurement of the ionization produced by particles in a medium presents a great interest in several fields from metrology to particule physics and cosmology. The ionization quenching factor is defined as the fraction of energy released by ionisation by a recoil in a medium compared with its kinetic energy. At low energy, in the range of a few keV, the ionization falls rapidly and systematic measurement are needed. We have developped an experimental setup devoted to the measurement of low energy (keV) ionization quenching factor for the MIMAC project. The ionization produced in the gas has been measured with a Micromegas detector filled with Helium gas mixture.Comment: Proceedings of the fourth international symposium on large TPCs for low energy rare event detection, Paris, France, Dec. 2008 To appear in Journal of Physic

    Dark matter directional detection with MIMAC

    Full text link
    MiMac is a project of micro-TPC matrix of gaseous (He3, CF4) chambers for direct detection of non-baryonic dark matter. Measurement of both track and ionization energy will allow the electron-recoil discrimination, while access to the directionnality of the tracks will open a unique way to distinguish a geniune WIMP signal from any background. First reconstructed tracks of 5.9 keV electrons are presented as a proof of concept.Comment: 4 pages, proc. of the 44th Rencontres De Moriond: Electroweak Interactions And Unified Theories, 7-14 Mar 2009, La Thuile, Ital

    Micromegas micro-TPC for direct Dark Matter search with MIMAC

    Full text link
    The MIMAC project is a multi-chamber detector for Dark Matter search, aiming at measuring both track and ionization with a matrix of micromegas micro-TPC filled with He3 and CF4. Recent experimental results on the first measurements of the Helium quenching factor at low energy (1 keV recoil) are presented, together with the first simulation of the track reconstruction. Recontruction of track of alpha from Radon impurities is shown as a first proof of concept.Comment: 5 pages, Proc. of the fourth international symposium on large TPCs for low energy rare event detection, Paris, France, Dec. 2008. To appear in Journal of Physic

    Feasibility of Estimation of Aortic Wave Intensity Using Non-invasive Pressure Recordings in the Absence of Flow Velocity in Man

    Get PDF
    Background: Wave intensity analysis provides valuable information on ventriculo-arterial function, hemodynamics, and energy transfer in the arterial circulation. Widespread use of wave intensity analysis is limited by the need for concurrent measurement of pressure and flow waveforms. We describe a method that can estimate wave intensity patterns using only non-invasive pressure waveforms (pWIA). Methods: Radial artery pressure and left ventricular outflow tract (LVOT) flow velocity waveforms were recorded in 12 participants in the Southall and Brent Revisited (SABRE) study. Pressure waveforms were analyzed using custom-written software to derive the excess pressure (P xs ) which was scaled to peak LVOT velocity and used to calculate wave intensity. These data were compared with wave intensity calculated using the measured LVOT flow velocity waveform. In a separate study, repeat measures of pWIA were performed on 34 individuals who attended two clinic visits at an interval of ≈1 month to assess reproducibility and reliability of the method. Results: P xs waveforms were similar in shape to aortic flow velocity waveforms and the time of peak P xs and peak aortic velocity agreed closely. Wave intensity estimated using pWIA showed acceptable agreement with estimates using LVOT velocity tracings and estimates of wave intensity were similar to values reported previously in the literature. The method showed fair to good reproducibility for most parameters. Conclusion: The P xs is a surrogate of LVOT flow velocity which, when appropriately scaled, allows estimation of aortic wave intensity with acceptable reproducibility. This may enable wider application of wave intensity analysis to large studies
    corecore